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Abstract: This paper was concerned to simulate seepage phenomena (problems) via a novel approach. 

A high-resolution finite volume method (FVM) was employed to solve the two-dimensional (2D) seepage 

equations (SEs) using an unstructured grids. Voronoi mesh generation method has been exploited for grid 

generation method due to its special advantages. In this attempt, to reach to a proper accuracy, solving 

method obtained on even-odd steps was applied. The model named V-Seep (with MATLAB software) 

was run under different seepage conditions and then verified by comparing the model outputs with results 

obtained from different models and measured seepage. The Phase2-2D and Seep-W software which are 

based on FEM and a code based on FVM with triangular grids. Due to a precise agreement between those 

output and other software results, the V-Seep could be considered as a reliable method for dealing with 

seepage problems, especially in embankment dams. In addition, statistical observations indicated a good 

conformity between the V-Seep and measured data from a case study. The results indicated a higher 

efficiency and precision of the discrete equations resulted from the Voronoi mesh. Thus, it could be 

recommended to utilize the Voronoi mesh in the numerical discrete equations. 
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1. Introduction:  

Seepage through dam body and its foundations 

could redounded to dam failure and floods 

induced by dam failures can cause significant 

loss of human life and property damages, 

especially when located in highly populated 

regions. These entail numerical and laboratory 

investigations of seepage and their potential 

damage. In this approach the diffusion 

(Laplace's equation) equations (DEs) are 

conventionally used to describe the seepage 

flow. Many researchers studied the seepage in 

porous media and seepage flow through dam 

body and its foundation, such as Caffrey and 

Bruch Jr [1], Desai et al. [2], Gupta and Bruch 

[3], Van Walsum and Koopmans [4], Chen et 

al.[5], Jianhong Zhang  et al.[6], Guangxin et 

al.[7], Yuxin et al. [8[,Bonelli [9], Jun-feng and  

Sheng [10], Shou-yi et al [11],  Mohamed Abd 

El-Razek et al.[12], Tang Jing and Yongbiao 

[13], Kacimov and Obnosov [14], Navas and 

López [15], Rafiezadeh and Ashtiani [16], 

especially using numerical methods. Recently: 
H. Zheng et al.[17] introduced a new variational 

inequality formulation for seepage problems 

with free surfaces, in which a boundary 

condition of Signorini’s type were prescribed 

over the potential seepage surfaces. They 

presented that via this formula the singularity of 

seepage points eliminated and the location of 

seepage points determined easily. Compared to 
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other variational formulations, the proposed 

formulation can effectively overcome the mesh 

dependency and significantly improve the 

numerical stability. JIANG Qing-hui et al.[18] 

proposed Three-dimensional numerical 

manifold approach for the unconfined seepage 

analysis and the tetrahedral finite element 

meshes were chosen as the mathematical 

meshes covering the whole volume. They 

developed an object-oriented program named 

3DS-NMM and then applied it for seepage 

analysis of a homogenous earth dam. Hashemi 

Nezhad et al. [19] investigated the effect of 

solution arrangement of the grids (SAG) on 

accuracy of diffusion equation’s  solution and 

exploited MATLAB software for writing a code 

for solving algebraic equation set by using Line-

by-line (LBL) solution method with alternative 

SAG. Kazemzadeh-Parsi and Daneshmand [20] 

introduced a three dimensional smoothed ¬fixed 

grid ¬finite element for evaluating unconfined 

seepage problems in inhomogeneous and 

anisotropic domains with arbitrary geometry to 

aim of facilitate solution of variable domain 

problems and improve the accuracy of the 

formulation of the boundary intersecting 

elements. Hasani et al. [21] evaluated amount of 

Seepage flow in earth fills dams (Ilam dams as a 

case study) using numerical models (Seep/W) 

with unstructured mesh, and then used the 

Slope/W software to evaluated the slope 

stability under different conditions. Yu-xin Jie 

et al. [22] used, the natural element method 

(NEM) as kind of meshless methods in the order 

to seepage analysis with free surface in dams 

via finite element method. NEM constructs 

shape functions based on the Voronoi diagrams. 

They introduced that NEM needs only the nodes 

information, and the pre-processing is simple. 

Since the nodes can be changed freely, the 

method is more suitable for dealing with 

problems that have changeable boundaries or 

boundaries dependent on computation results. 

Abhilasha et al. [23] presented the application 

of mathematical modeling of seepage in 

embankment dams and used Various software in 

the analysis of embankment dams like 

MODFLOW, SEEP/W, ANSYS, PLAXIS, 

PDEase2D, SVFLUX, etc., and were discussed 

them with reported case studies. Rafiezadeh and 

Ataie-Ashtiani [24] developed a boundary 

element method (BEM) for solving transient 

free-surface seepage problems in an anisotropic 

domain via finite difference method and 

evaluated the advantages of this approach with 

applied it for different cases. Later on Zheng et 

al. [25] presented the Primal mixed solution to 

unconfined seepage flow in porous media with 

numerical manifold method and showed that 

their proposed procedure is able to 

accommodate complicated dam configuration 

and strong non-homogeneity. In recent year, 

Shahrokhabadi et al. [26] presented an 

innovative boundary-type mesh-free method to 

determine the phreatic line location in 

unconfined seepage problems. Their method 

was developed based upon integrating the 

Method of Fundamental Solutions (MFS), 

Particle Swarm Optimization (PSO) algorithm, 

and Thiele Continued Fractions (TCF). To 

accurately estimate the phreatic line location, 

their proposed framework used MFS to solve 

the flow continuity equation, TCF to generate 

the phreatic line and PSO to optimize the 

phreatic line location generated by TCF. An 

excellent agreement was demonstrated upon 

comparison of their proposed method to the 

results attained from the analytical solutions and 

experimental tests. Finally  Fukuchi [27] 

introduced a new method called interpolation 

finite difference method (IFDM) for solving two 

and three dimensional elliptic partial differential 

equations (PDEs) over complex domain and 

applied that for calculation of steady state 

seepage problem in unconfined domain. 

Compared results showed that the proposed 

method has adequate accuracy and wide 

applicability as a general method of numerically 

solving seepage problems. This paper attempts 

to present a novel development 2D seepage flow 

problems in homogeneous and in-homogenous 

media. A high-resolution FVM is employed to 

solve the diffusion equation on unstructured 

Voronoi mesh. The local Lax-Friedrichs (LLxF) 

scheme is used for the estimation of fluxes at 

cells and the numerical approximation of 

hyperbolic conservation laws. Table (1) is 

showing the general summarization of recent 

researches on numerical seepage analyses. 

1-1 Research methodology 

1-1-1 Governing Equations: 

The general governing equations of seepage 

including the terms of convection and diffusion 

can be written in different forms depending 

upon the requirements of the numerical solution. 

The 2D form of it is introduced as follows: 

𝜕𝑈

𝜕𝑡
+

𝜕𝐹

𝜕𝑥
+

𝜕𝐺

𝜕𝑦
= 𝑆                      (1) 

𝑈 = 𝜌𝜑                                     (2) 

𝐹 = 𝜌𝑢𝜑 − Г
𝜕𝜑

𝜕𝑥
                          (3) 

𝐺 = 𝜌𝑣𝜑 − Г
𝜕𝜑

𝜕𝑦
                        (4) 
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The parameter φ which could be quantities such 

as head, heat, mass, etc. and parameter Г is the 

diffusion coefficient, u and v are the velocity 

and S is the source term. Flow in porous media 

like as some other phenomena such as heat, 

mass, potential flow, etc. could be studied via 

diffusion term of general governing equation. 

 

1-1-2 Voronoi Mesh Generating Method: 

Follows the German mathematician Johann 

Peter Gustav Lejeune Dirichlet (1850) who 

introduced the unstructured grid, Voronoi grids 

were further generalised by the Russian 

mathematician Georgy Feodosevich Voronoy 

(1908). Voronoi diagrams have been named 

after the latter author in computer science, while 

they were named Dirichlet tessellations in 

mathematics. During the last decades The 

Voronoi tessellation (grids) have been widely 

used in large number of fields in science and 

technology, even in art, and they have found 

numerous practical and theoretical applications. 

The contribution of Voronoi diagram to 

computer aided design, mathematic and 

engineering (CAD/CAM/CAE) has also been 

significant as it is one of major computational 

tools for geometric modeling, geometric 

processing, mesh generation and so on. Too 

many researches could be named which have 

used voronoi diagram in recent year, such as: 

Wang et al. [28] proposed an adaptive crystal-

growth Voronoi method to improve the 

representation of spatially continuous 

socioeconomic context in service area 

delimitation. They evaluated the continuous 

socioeconomic contexts (e.g., population 

distribution) and the compactness criterion 

(minimize travel time based on road network 

and natural barriers).  Their proposed method 

innovatively distributed socioeconomic 

attributes using additional weighted raster 

planes and adaptively adjusted the crystal-

growth speed based on real-time statistical 

results of the weights of each grown area. Geiß 

et al. [29] solved a transportation problem using 

Voronoi diagrams. They had given a geometric 

proof for the fact that additively weighted 

Voronoi diagram can optimally solve some 

cases of the Monge-Kantrovich transportation 

problem, where one measure has finite support, 

Wei Tu et.al. [30] proposesed a bi-level Voronoi 

diagram metaheuristic to solve the large-scale 

multi-depot vehicle routing problem (MDVRP). 

Their computational experiments indicated that 

the proposed metaheuristic can solve large-scale 

real-world MDVRPs more efficiently than many 

other state-of-the-art algorithms. Moreover, the 

proposed algorithm performs well with several 

small and medium-scale bench mark MDVRP 

instances, Jun Liu et al. [31] used Voronoi 

diagram algorithm for design and optimization 

bench blasting in open pit mines. They 

developed a code for the bench blast design in 

C++ and showed that their proposed method can 

greatly reduce the amount of the design work 

and validly improve the blast results, Pellerin et 

al. [32] proposed an automatic surface re-

meshing of 3D structural models based on 

Voronoi diagram. The main perspective of their 

method was to adapt it to volumetric meshing 

and used the generated meshes to solving partial 

differential equations describing coupled 

physical processes in the subsurface, Yongding 

Zhu and Jinhui Xu [33] Improved an algorithms 

for the farthest colored Voronoi diagram of line 

segments in the plane and achieved a tight upper 

bound on the combinatorial complexity of the 

farthest-color Voronoi diagram of n line 

segments with k different colors, Didandeh et al. 

[34] used the Voronoi diagrams to solve a 

hybrid facility location problem. They presented 

a solutions to located a set of facilities on a two 

dimensional space, with respect to a set of 

dynamic demand. Later on Dong-Ming et al. 

[35] presented an efficient algorithm to compute 

the clipped Voronoi diagram for a set of sites 

with respect to a compact 2D region or a 3D 

volume. Also they applied the proposed method 

to optimal mesh generation based on the 

centroidal Voronoi tessellation. At last El Said 

et al. [36] proposed a multi-scale modeling 

approach based on a 3D spatial Voronoi 

tessellation for predicting the mechanical 

behavior of 3D composites with accurate 

representation of the yarn architecture within 

structural scale models. 

Basically, In the Voronoi mesh, the chosen 

point has lower distance in the devoted domain 

rather than other points. If one point has the 

same distance from several domains, it will be 

divided between domains. Indeed, these points 

create Voronoi cell boundaries. Consequently, 

internal sections of the Voronoi mesh consist of 

nodes belonging to one domain and boundaries 

include nodes that belong to several domains 

[37]. 

 

1-1-3 Numerical Modeling Algorithm: 

The main advantage of the finite volume 

method (FVM) is that volume integrals in a 

partial differential Equation (PDE) containing a 
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divergence term are converted to surface 

integrals using the divergence theorem. These 

terms are then evaluated as fluxes at the 

surfaces of each FV. 

Because the flux entering a given volume is 

identical to that leaving the adjacent volume, 

these methods are conservative. Another 

advantage of the FVM is that it is easily 

formulated to allow for unstructured meshes. 

Unstructured grid methods utilize an arbitrary 

collection of elements to fill the domain. These 

types of grids typically utilize triangles in 2D 

and tetrahedral in 3D, although quadrilateral, 

hexahedral, Voronoi, and Delaunay meshes can 

also be unstructured.  

In this paper, the studied domain was 

discretized using unstructured Voronoi meshes. 

Delaunay triangulation was created and then the 

Voronoi mesh was established using the Qhull 

program in MATLAB software. The governing 

equation was discretized applying the FVM. In 

this approach, the studied domain was divided 

into several separated control volumes without 

any overlapping.  

By integrating the governing differential 

equation over every control volume, the system 

of algebraic equations was created so that each 

of its formulations belonged to one control 

volume and each equation linked a parameter in 

the control volume node to different numbers of 

the parameter in adjacent nodes. This 

consequently led to the computation of the 

parameter in each node [38]. 

In order to solve discrete equations, the 

parameter in each node was computed 

considering its discrete equation and newest 

adjacent nodes’ values. Solution procedure can 

be expressed as follows.  

(1)     Assuming an initial value in each node as 

an initial condition.  

(2)     Calculating the value in a node 

considering its discrete equation. 

(3)    Performing pervious step for all nodes 

over the studied domain, one cycle is performed 

by repetition this step. 

(4)  Verifying the convergence clause. If this 

clause is satisfied, the computing will end 

otherwise the computations will be repeated 

from the second step.  

As exact values of boundary conditions were 

not distinct, the Riemann boundary condition 

was utilized for computing the investigating 

parameter. Therefore, by assuming a layer 

which is close to the boundary layer, 𝜕/𝜕𝑥=0 

and 𝜕/𝜕𝑦=0 were defined for the investigating 

parameter and then, calculated values for 

boundary adjacent nodes transform to related 

boundary nodes. This procedure will continue 

until the results difference is converged. 

 

1-1-4 Discretization of Governing Equations: 

1-1-4-1 FV Discretization: 

Various methods can be used to discretize the 

governing equations, among which the FVM 

due to its ability to satisfy mass and momentum 

conservation is frequently adopted. In this 

research, the discretization of equation (1) was 

performed using the FVM with unstructured 

Voronoi mesh, as shown in Fig.1. 

 

Fig.1. The 2D schematic Voronoi mesh cell 

used for describing the discretization of the 

governing equations 

 

The 1
st
 steps discretization process with Voronoi 

mesh is given by equation (5) and equation (6). 

∬
𝜕𝑈

𝜕𝑡𝐴
𝑑𝐴 + ∬ (∇⃗⃗ 

𝐴
. �⃗� )𝑑𝑙 = ∬ 𝑆𝑑𝐴         

𝐴
       (5) 

 

By implementing divergence theorem, equation 

(5) is yielded to equation (6) as follows: 

∬
𝜕𝑈

𝜕𝑡
𝑑𝐴 + ∮(�⃗⃗� . �⃗� )𝑑𝑙 = ∬𝑆𝑑𝐴   (6)

𝐴𝑙𝐴

 

Where �⃗⃗� = 𝐹 𝑖 + 𝐺 𝑗  Equation (6) can be 

written as equation (7) by approximating the 

line integral for all control volumes and nodes, 

generally, 
𝑑𝑈𝑖

𝑑𝑡
= −

1

𝐴𝑖
∑ (�⃗⃗� . �⃗� 𝑖𝑗∆𝑙𝑖𝑗𝑗 ) + 𝑆𝑖      (7) 

 

1-1-4-2 FV Discretization: 
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By applying the Voronoi mesh, equation (7) is 

yielded to equation (8) for an investigated 

control volume; however, Figure 1 illustrates 

the 2D Voronoi mesh grid used for describing 

these equations as follows: 

            
𝜕𝑈

𝜕𝑡
= −

1

𝐴
∑(

𝑓

�⃗⃗� . 𝐴𝑒 𝜀)𝑓 + 𝑆        (8)
 

           �⃗⃗� = 𝐻𝜀 . 𝑒 𝜀 + 𝐻𝜂 . 𝑒 𝜂                     (9) 

         
𝜕𝑈

𝜕𝑡
= −

1

𝐴
∑𝐻𝑓𝐴𝑓 + 𝑆

𝑓

                 (10)
 

∫
𝜕𝑈

𝜕𝑡
𝑑𝑡 = ∫ (−

1

𝐴
∑𝐻𝜀𝐴𝑓

𝑓

)𝑑𝑡 + ∫ 𝑆𝑑𝑡
𝑡+∆𝑡

𝑡

𝑡+∆𝑡

𝑡

𝑡+∆𝑡

𝑡

(11)

 

       𝑈𝑝
𝑛+1 − 𝑈𝑝

𝑛 = −
1

𝐴
∑𝐻𝜀𝐴𝑓∆𝑡 + 𝑆∆𝑡

𝑓

 (12)
 

      𝐻𝜀 = 𝑛1𝐹𝜀 + 𝑛2𝐺𝜀                                  (13) 

    𝑛1 =
(𝑥𝑛𝑏 − 𝑥𝑝)

√(𝑥𝑛𝑏 − 𝑥𝑝)
2
+ (𝑦𝑛𝑏 − 𝑦𝑝)

2
    (14)

 

    
𝑛2 =

(𝑦𝑛𝑏−𝑦𝑝)

√(𝑥𝑛𝑏−𝑥𝑝)
2
+(𝑦𝑛𝑏−𝑦𝑝)

2
                  (15)

 

The discrete equation can be written as equation 

(16), 

    𝑈𝑝
𝑛+1 = 𝑈𝑝

𝑛 −
∆𝑡

𝐴
∑[𝑛1𝐹𝜀𝐴𝑓 + 𝑛2𝐺𝜀𝐴𝑓]

𝑛
+ 𝑆𝑛∆𝑡

𝑓

 (16) 

 

1-2 The Local Lax-Friedrichs (LLxF) High-

Order Scheme. 

In shock capturing schemes, the location of 

discontinuity is captured automatically by the 

scheme as a part of the solution procedure. 

These slope-limiter or flux-limiter methods can 

be extended to systems of equations. In this 

paper, the algorithm is based on hybrid 

differences with comparable performance to 

Riemann type solvers used to obtain a solution 

for PDE’s describing systems. Finite Volume 

(FV) and Finite Difference (FD) methods are 

closely related to central schemes like the most 

shock capturing schemes [39]. Rusanov scheme 

is often called the LLxF method, because it has 

the same form as the Lax-Friedrichs (LxF) 

method but the lateral diffusion is chosen 

locally. It means that it is less diffusive than 

normal LxF, since it locally limits the numerical 

lateral diffusion instead of having a uniform 

lateral diffusion on the entire domain.  

Many researchers (e.g., Lin et al. [40], van Dam 

and Zegeling [41], and Lu et al. [42]) utilized 

LLxF splitting scheme in different problems 

such as 2D SWEs, 1D adaptive moving mesh 

method and its application to hyperbolic 

conservation laws from magneto 

hydrodynamics (MHD), and the performance of 

the weighted essential non oscillatory (WENO) 

method. 

In this research, LLxF is used as a flux 

calculator. By expanding equations (16), 

equation (17) can be written as follows: 

𝑈𝑝
𝑛+1 = 𝑈𝑝

𝑛 −
∆𝑡

𝐴
[∑((𝐹𝑓)𝑛𝑏.𝑜𝑢𝑡

𝐴𝑓𝑛1𝑓)

𝑓

+ ∑((𝐹𝑓)𝑛𝑏.𝑖𝑛
𝐴𝑓𝑛1𝑓)

𝑓

+ ∑((𝐺𝑓)𝑛𝑏.𝑜𝑢𝑡
𝐴𝑓𝑛2𝑓)

𝑓

− ∑((𝐺𝑓)𝑛𝑏.𝑖𝑛
𝐴𝑓𝑛2𝑓)

𝑓

]

+ 𝑆∆𝑡       (17) 

The parameters in equation (1) to (4) for 

seepage flow via Laplace’s equation described 

as below: 

              𝜑 = ℎ   &   Г = 𝑘                   (18)  

               𝐹 = 𝑢 = Г
𝜕𝜑

𝜕𝑥
                         (19)

 

              𝐺 = 𝑣 = Г
𝜕𝜑

𝜕𝑦
                          (20)

 

             𝑈 = ℎ 𝑎𝑛𝑑 𝑆 = 0                      (21) 

Inter-cell fluxes can be estimated by 

implementing the following equations: 

            (𝐹𝑓)𝑛𝑏.𝑜𝑢𝑡
=

𝐹(𝑢𝑛𝑏
𝑛 ) + 𝐹(𝑢𝑝

𝑛)

2
    (22) 

          (𝐹𝑓)𝑛𝑏.𝑖𝑛
=

𝐹(𝑢𝑛𝑏
𝑛 ) + 𝐹(𝑢𝑝

𝑛)

2
       (23)

 

          (𝐺𝑓)𝑛𝑏.𝑜𝑢𝑡
=

𝐺(𝑣𝑛𝑏
𝑛 ) + 𝐺(𝑣𝑝

𝑛)

2
     (24)

 

          (𝐺𝑓)𝑛𝑏.𝑖𝑛
=

𝐺(𝑣𝑛𝑏
𝑛 ) + 𝐺(𝑣𝑝

𝑛)

2
       (25)

 

After computing inter-cell fluxes by utilizing 

the LLxF scheme in Voronoi mesh, equations 

can be solved and the final result can be 

calculated for each time step. The Δ𝑡 can be 

computed using the Courant Friedrichs-Lewy 

(CFL) for each time step as follows: 

The CFL should be range over [0,1] for 
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      Fig.2. Sonboleroud dam satellite 

view                                        

 

 

 

 

Fig.3. Mazandaran Province – iran           

achieving to the stability (0 < CFL < 1). 

  ∆𝑡 = 𝐶𝐹𝐿 × 𝑚𝑖𝑛 (√(𝑥𝑛𝑏 + 𝑥𝑝)
2
+ (𝑦𝑛𝑏 + 𝑦𝑝)

2
) (26) 

 

Table 1.General Summarization of methods and software used by some other studies 
References Hasani Kazemzade Yu-xin Abhilasha Jiang Rafiezade This article 

 
Numerical 

Method 

 

 
FEM 

 
FEM 

 
NEM 

 
FEM 

 
NMM 

 
FDM 

 
FVM 

Applied 

Software 

 

Com. Soft. 3D SFGFEM Seepdam Com. Soft. 3DS NMM SEEPBEM3D V-Seep 

Mesh Grid 

 

 

Unstructured 

Grids 

NBFM Mesh-less Various Tetrahedral 

FE Mesh 

BEM Unstructured 

Voronoi 

Dimensional 

approach 

 

2D 3D 2D 2D,3D 3D 3D 2D 

Studied Field Earth fill 

Dam 

Unconfined 

seepage Flow 

Free Surface 

Seepage in 

Dams 

Earth fill Dam Earth fill Dam Earth fill Dam and 

well 

Earth fill 

Dam 

1-3 Preparation and Validation of the 

Numerical Algorithm 

The CFD code named V-Seep was prepared on 

the novel approach of unstructured Voronoi 

grid. V-Seep was then validated using real 

measured data from a case study. In mentioned 

program, after creating the case geometry, the 

Voronoi mesh algorithm is generated the proper 

meshes for described domain. With introducing 

the boundary layers and material properties, 

analyzing process was started. V-Seep is 

produced to calculating the seepage flow 

through the embankment dams. Due to this aim 

the geometry of an embankment dam is 

introduced to V-Seep program and then.with 

using of correlation method for producing the 

upper stream-line flow in dam body (Phreatic 

line), the piezometeric head and flow discharge 

in all nodes was calculated. The potential line 

and stream-line in dam body is plotting 

accordingly. 

The case study which has been used in this 

research is the right embankment zone of 

Sonboleroud dam placed in north part of Iran 

cross the branch of Babol River. The mentioned 

zone of the dam has a length of about 30 m 

which stands adjacent to the dam spillway 

walls. The upstream slope of the dam which is 

conta

ct 

with water is 1:3.3 and downstream part slope is 

1:1.9. Embankment width in top is 1 m and in 

bottom which connecting to foundation is 

18.5m. During the flood events water raise up to 

1.8 m above upstream face of embankment dam. 

Hydraulic conductivity based on geo-technique 

analysis is 3.44E-05 m/s. Boundary condition 

that is considered for this case study contained 

the pervious and impervious boundary and 

water level up/downstream of the embankment. 

Nodes initial values for different volume is 

gaining from using of specified nodes 

pizometric head values attribution. Mentioned 

values is descried via up/downstream potential 

lines and applied in boundary conditions. Figs.2 

to 4 show the case study satellite view and 

geometry. 

In present article for verification and certainty 

of precision of produced program, different 

testes such as static, dynamic and stability tests 

were done. Then the obtained results were 

compared with real measured data from the case 

study. Fig.5 shows the Voronoi mesh generation 

for presented geometry. 
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 Fig.4. Case Study Geometry 

 

 

 

 

Fig.5.Voronoi Mesh Generation for studied Case 

 

One of the important tests for verification of the program is the model sensibility to usage of different 

mesh generation method. Due to this fact the prescribed geometry is meshing with regular rectangular-

triangular meshes and the novel approach of V-Seep model. Output result compared with obtained result 

from Voronoi unstructured grids method. Figs.6 to 9 and table (2) show the mesh generation and output 

result for various mesh generation methods. Existing of trivial variance between two mentioned results, 

indicted Voronoi grid technique is proper approach for mesh generation in complex geometry with 

certainty. The seepage rate has been measured for described studied zone is about 3.74E-05 m3/sec/m. 

 

 

 
               Fig.6.Rectangular- Triangular Mesh                                               Fig.7.Triangular Mesh 

 

 Fig.8.Potential Line and Net Flow (Rec. Tri. Mesh)           Fig.9.Potential Line and Net Flow (Voronoi 

Mesh)  
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Table2. Seepage values for various mesh generation methods 

 

In researches and studies obtained on computational approach, time is the most important 

parameter. Reaching to accurate result in majority of numerical method based on small grid dimensions 

and increasing the number of calculation equation and consuming the time accordingly. Due to mentioned 

fact the V-Seep program tests with 3 different mesh size. The results show that the presented method has 

low sensibility to mesh size and is suitable for big domain. Fig.10 show the small size Voronoi mesh 

generation and table (3) show the V-Seep program output results using different Voronoi mesh generation 

size. 

 

 
Fig.10. Small Size Voronoi Mesh Generation 

 

Table3.Seepage values for different Voronoi mesh size 

 

 

  

 

 

2- Discussion and conclusion 
After validation process of V-Seep program the case study is evaluated via common software for seepage 

analyzing such as Seep/W and Phase2-2D. Figs.12 to 15 show the mesh generation and output results 

with Seep/W and Phase2 software. Table (4) shows the comparison between calculated seepage quantities 

from various methods.  

 
      Fig.11. Seep/W Mesh Generation                           Fig.12. Potential Line and Net Flow (Seep/W Output)  

 

FVM With Voronoi 

Unstructured Mesh 

FVM with  Rectangular-

Triangular Mesh 

FVM with  Triangular 

Mesh 

Mesh Generation Method 

3.66E-05 3.89E-05 3.78E-05 
Calculated Discharge 

m3/sec/m 

V-Seep with Large 

Mesh Size 

V-Seep with Medium 

Mesh Size 

V-Seep with Small 

Mesh Size 

Mesh Size 

3.85E-05 3.73E-05 3.66E-05 
Calculated Discharge 

m3/sec/m 
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 Fig.13.Phase2 Mesh Generation                                 Fig.14.Potential Line and Net Flow (Phase2 Output)            
 

Table4.Seepage values from various models 

 

Fig.15 and 16 show the phreatic line diagram from different calculated methods and measured data. 

 
Fig.15. Phreatic Line Diagram 

 

For evaluation of calculated results the Mann-Whitney test has been used and the results show no 

significant differences between calculated results via V-Seep model and the real measured data 

(P.Value=.99). Also P-value for Seep/W and Phase2 models showed proper accuracy with real measured 

data. Fig.17 and table (4) show the results of the Mann-Whitney test for statistical analyses between the 

obtained results using V-Seep and other models. 

 
Fig.16. Seepage along x axis 

 

 
Fig.17. Comparison between V-Seep results and other models  
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Table4. Mann-Whitney test parameters for comparison between V-Seep and other models and measured 

data. 
Output result Parameter 

Mann-Whitney U Wilcoxon W Z P value 

Seep /W 39.60 84.50 -0.039 0.981 

Phase2 39.00 84.00 -0.132 0.931 

Measured data 40.00 85.00 -0.044 0.991 

 

 

In the current research, a novel and friendly 

user code named V-Seep was evaluated. This 

novel code was showing that the LLxF scheme 

along with the FVM on the unstructured 

Voronoi grid is a suitable combination in order 

to simulate 2D Seepage problems. The 

advantages of this method are very promising, 

especially in reconstructing the conducted tests. 

For 2D seepage flow, real measured data was 

considered for validation. Obtained results 

demonstrated that there are no significant 

differences between real measured results and 

V-Seep outputs. In addition obtained Results 

were compared with some other common 

software in seepage analyzing such as Seep/w 

(Geo-slope Co.) and Phase2-2D (Rocscience 

Co.) and no significant numerical dispersion 

problem or nonphysical alternation was 

observed in the results. The comparison showed 

a good agreement between V-Seep results with 

mentioned software. In terms of mesh grid 

comparison, it was seen that the Voronoi mesh 

grid results are closer to triangular mesh grid 

results compared with rectangular mesh grid 

results. In addition generally the unstructured 

Voronoi mesh grid is able to model inlet and 

outlet fluxes in every direction of control 

volume faces. Node values impressibility 

proportional to assigned area from adjacent 

nodes, leads to creating more uniform condition 

of diffusion and pressure distribution in studied 

area. Also due to low interacts of output results 

gained from V-Seep program by mesh size, the 

presented method (FVM-Voronoi mesh) shall 

be a recommended choice instead of previous 

method such as FEM. The results indicated a 

higher efficiency and precision of the discrete 

equations resulted from the Voronoi mesh. 

Thus, it could be recommended to utilize the 

Voronoi mesh in the numerical discrete 

equations. The Voronoi mesh grid is able to 

model complicated geometries, and also it could 

produce the final discrete equations leading to 

accurate results within a lower computational 

demand compared to other unstructured meshes.  

Nomenclatures 

A⃗⃗ : Adjacent surface vector of the investigated Voronoi cell 
A: Area of the adjacent surface vector of the investigated Voronoi cell (A⃗⃗ ) 

Ax: The component of A in x direction 
Ay: The component of A in y direction 

F,G: Flux vector functions 
Fε,Gε: The Voronoi cell normal flux vectors 
U: The vector of conserved variables 
H: Input and output fluxes to a Voronoi cell 
S: The vector of source terms 
S0x: Bed slope in the x direction 
S0y: Bed slope in the y direction 

a,b: Nodes of the both sides of the investigated Voronoi cell f 
eξ: Unit outward normal vector in each Voronoi cell f 

eη: Theunit tangent vector in each Voronoi cell f 
f: Joint surface element between investigated cell and other adjacent cells 

g⃗ : Gravity acceleration 
h: The water depth 
h̅: The mean water depth 
hu: The upstream water depth at t = 0 
hd: The downstream water depth at t = 0 
l: The boundary of the ith control volume 
n: The Manning’s roughness coefficient 
n⃗ : The outward unit vector normal to the boundary 
nb: The central node of adjacent cells 
t: Time 
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u: Velocity vector component in x direction 
u̅: The mean velocity vector component in x direction 

v: Velocity vector component in y direction 
v̅: The mean velocity vector component in y direction 

x: Horizontal coordinate component 

y: Verticalcoordinatecomponent 
∑ f: The sum over the all Voronoi cells 
p: Central node of investigated Voronoi cell 
∆t: Time interval 

∆ξ: The distance between the central node of investigated Voronoi cell and the adjacent cells 

H0: The null hypothesis 
Z: The value of Z-Test 
Z0: The critical value of Z extracted from the statistical Z-distribution graph 
RS1: Sum of ranks for the first comparing group 
RS2: Sum of ranks for the second comparing group 
∝: The significance level 
NA: The number of data in the first comparing group 
NB: The number of data in the second comparing group 
 

Subscripts: 
f: Denotes the parameter at the Voronoi cells side’s area f 

i: Counts all central control volumes 
j: Counts all nodes of the central control volumes 
nb: Denotes parameters at the central node of adjacent Voronoi cells 
p: Denotes parameters at central node of investigated Voronoi cell 
in: 
Denotes the parameter outside the Voronoi cells side’s area f 

Out: 
Denotes the parameter outside the Voronoi cells side’s area f 
ξ: The parameter component in eξ direction 
η: The parameter component in eη direction 
Superscripts: 
 

    

 

 

 

 

 

 

 

 

 

 

n: Denotes parameters belonging to time of t 
n+1: Denotes parameters belonging to time of t + Δt 
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