Effects of Fe2o3 and Co2o3 nanoparticles on Organisms in Freshwater

Document Type : REVIEW PAPER


1 Department of Environmental Science, Ahvaz Branch, Islamic Azad University, Ahvaz , Iran

2 Department of Aquaculture , Ahvaz Branch, Islamic Azad University

3 Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran Department of Environmental science Ahvaz Branch Islamic Azad university Ahvaz Iran

4 Advanced Surface Engineering and Nano Materials Research Center, Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran



Nanoparticles (NPs) are causing threats to the environment. In this review, we examined how hematite (Fe2O3) and cobalt oxide (Co2O3) nanoparticles impact the species of freshwater green algae Chlorella vulgaris (C. vulgaris). We exposed laboratory cultures to five initial concentrations of nanoparticles and measured impacts on species in 24, 48, 72, 96, 120, and 144 hours in Karun River water at 20-25°C. Our results indicated that Fe2O3 and Co2O3 NPs significantly (dependent on concentration) reduced the chlorophyll a, b, and carotenoid contents of algae C. vulgaris compared to the control group (P <0.05). Also, due to the combination of these two nanoparticles, Co2O3 (50 Fe2O3 +100 Co2O3) has a more negative effect on algae chlorophyll change. According to the data, the exposure concentration was also found to be a more effective factor in the Chlorophyll content in algae species as compared to the exposure time. Our study suggests this nanoparticle has potential to affect aquatic life and ecosystem properties of freshwater habitats.


Adam V, Nowack B. 2017, European country-specific probabilistic assessment of nanomaterial flows towards    
         landfilling, incineration and recycling. Environmental Science: Nano, 4(10), pp.1961-1973. Doi:   
    Adam V, Caballero-Guzman A, Nowack B. 2018,  Considering the forms of released engineered nanomaterials  
         In probabilistic material flow analysis. Environmental pollution, 243, pp.17-27. Doi:  
    Aruoja V, Pokhrel S, Sihtmae M, Mortimer M, Madler L,Kahru A. 2015, Toxicity of 12 metal-based  
        nanoparticles to algae, bacteria and protozoa. Environmental Science: Nano, 2(6), pp.630-644. Doi:  
    Assadian E, Dezhampanah H, Seydi E, Pourahmad J. 2019, Toxicity of Fe2O3 nanoparticles on human  
       blood lymphocytes. Journal of biochemical and molecular toxicology, 33(6), p. e22303. Doi:  
Baysal  A, Saygin H, Ustabasi G.S. 2018, Interaction of PM2.5 airborne particulates with ZnO and TiO2 nanoparticles and their effect on bacteria. Environmental monitoring and assessment, 190(1), p.34. Doi: 10.1007/s10661-017-6408-2.
Bundschuh M, Seitz F, Rosenfeldt R.R, Schulz R. 2016, Effects of nanoparticles in fresh waters: risks, mechanisms and interactions. Freshwater Biology, 61(12), pp.2185-2196. Doi: 10.1111/fwb.12701.
Chen M, Qin X, Zeng G. 2017, Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends in biotechnology, 35(9), pp.836-846. Doi: 10.1016/j.tibtech.2016.12.001.
Chen X, Zhang C, Tan L, Wang J. 2018, Toxicity of Co nanoparticles on three species of marine microalgae. Environmental Pollution, 236, pp.454-461. Doi: 10.1016/j.envpol.2018.01.081.
Dhakshinamoorthy V, Manickam V, Perumal E. 2017, Neurobehavioural toxicity of iron oxide nanoparticles in mice. Neurotoxicity research, 32(2), pp.187-203. Doi: 10.1007/s12640-017-9721-1.
El-Sheekh M.M, El-Kassas H.Y. 2016, Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: A review. Journal of Genetic Engineering and Biotechnology, 14(2), pp.299-310. Doi: 10.1016/j.jgeb.2016.09.008.
Handy R.D, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo‐Attwood T, Metcalfe C, Steevens J.A, Klaine S.J, Koelmans A.A, Horne N. 2012, Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environmental Toxicology and Chemistry, 31(1), pp.15-31. Doi: 10.1002/etc.706.
Hu J, Wang D, Wang J, Wang J. 2012, Bioaccumulation of Fe2O3 (magnetic) nanoparticles in Ceriodaphnia dubia. Environmental Pollution, 162, pp.216-222. Doi: 10.1016/j.envpol.2011.11.016.
Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R .2016, Cumulative Effect of Zinc Oxide and Titanium Oxide Nanoparticles on Growth and Chlorophyll a Content of Picochlorum Sp .  Environ Sci Pollut Res Int Feb;23(3):2821-30.Doi: 10.1007/s11356-015-5493-4
Jiang D, Zeng G, Huang D, Chen M, Zhang C, Huang C, Wan J. 2018, Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environmental research, 163, pp.217-227. Doi: 10.1016/j.envres.2018.01.030.
Kaweeteerawat C, Ivask A, Liu R, Zhang H, Chang C.H, Low-Kam C, Fischer H, Ji Z, Pokhrel S, Cohen Y, Telesca, D. 2015, Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies. Environmental science & technology, 49(2), pp.1105-1112. Doi: 10.1021/es504259s.
Lichtenthaler  H.K, Wellburn A.R. 1983, Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.
Manickam V, Dhakshinamoorthy V, Perumal E. 2018, Iron oxide nanoparticles induces cell cycle-dependent neuronal apoptosis in mice. Journal of Molecular Neuroscience, 64(3), pp.352-362. Doi: 10.1007/s12031-018-1030-5.
Manzo S, Miglietta M.L, Rametta G, Buono S, Di Francia G. 2013, Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of the Total Environment, 445, pp.371-376. Doi: 10.1016/j.scitotenv.2012.12.051.
Maruţescu L, Chifiriuc M.C, Postolache C, Pircalabioru G.G, Bolocan A. 2019, Nanoparticles’ toxicity for humans and environment. In Nanomaterials for Drug Delivery and Therapy (pp. 515-535). William Andrew Publishing. Doi: 10.1016/B978-0-12-816505-8.00012-6.
OECD., 2004 − Guideline for the testing of chemicals, Organisation for Economic Co-operation and Development (OECD).
Omrani, M. and Fataei, E. (2018). Synthesizing Colloidal Zinc Oxide Nanoparticles for Effective Disinfection; Impact on the Inhibitory Growth of Pseudomonas aeruginosa on the Surface of an Infectious Unit. Polish Journal of Environmental Studies, 27(4), pp.1639-1645. https://doi.org/10.15244/pjoes/77096
 Oukarroum A, Bras S, Perreault F, Popovic R. 2012, Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, pp.80-85. Doi: 10.1016/j.ecoenv.2011.11.012.
Park S, Woodhal, J, Ma G, Veinot J.G, Boxall A.B. 2015, Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates? Environmental Toxicology and Chemistry, 34(4), pp.850-859. Doi: 10.1002/etc.2868.
Rahmatinia Z, Rahmatinia M. 2018, Removal of the metronidazole from aqueous solution by heterogeneous electro-Fenton process using nano-Fe3O4. Data in brief, 19, pp.2139-2145. Doi: 10.1016/j.dib.2018.06.118.
Rao S, Shekhawat G.S. 2014, Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. Journal of Environmental Chemical Engineering, 2(1), pp.105-114. Doi: 10.1016/j.jece.2013.11.029.
Torabi Zarchi M, MirHosseini M.2017 ,Investigation of Combination Effect of MagnesiumOxide and Iron Oxide Nanoparticles on the Growth And Morphology of the BacteriaStaphylococcus Aureus and Escherichia Coli in Juice.JShahid Sadoughi Univ Med Sci ;24(11):924-937 .
Wang C, Chang XL, Shi Q, Zhang X. 2018, Uptake and Transfer of C-13-Fullerenols from Scenedesmus obliquus to Daphnia magna in an Aquatic Environment.
Wang L, Wang M, Peng C, Pan J. 2013, Toxic Effects of Nano-CuO, Micro-CuO and Cu [sup] 2+[/sup] on Chlorella sp. Journal of Environmental Protection, 4(1B), p.86. Doi:10.4236/jep.2013.41B016.
Wang S, Lv J, Ma J, Zhang S. 2016, Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii. Nanotoxicology, 10(8), pp.1129-1135. Doi: 10.1080/17435390.2016.1179809.
Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S. 2016, Corrigendum: zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis. Frontiers in plant science, 7, p.559. Doi:10.3389/fpls.2016.00559.
Wang F,Guan W ,Xu L,Ding Z, Ma H ,Ma A ,Terry N, 2019. Effects of Nanoparticles on Algae: Adsorption,
      Distribution,  Ecotoxicity and Fate . Appl. Sci. 9(8), 1534; https://doi.org/10.3390/app9081534 .
Warheit D .2018 Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the
      past 10 years? F1000Res 7:376. https://Doi.org/10.12688/f1000research. 12691.1.
Zhang H, Ji Z. Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao Y.P, Wang M. 2012, Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS nano, 6(5), pp.4349-4368. Doi:10.1021/nn3010087.
Zheng, S.M. Zhou, Q.XChen, C.HYang, F.XCai, ZLi, D. Geng, Q.J. Feng, Y.M. Wang, H.Q. 2019, Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticlesand ions to green algae Chlorella vulgaris. Sci. Total Environ.  660, 1182–1190.
Zhu S, Luo F, Zhu B, Wang G.X. 2017, Mitochondrial impairment and oxidative stress mediated apoptosis induced by α-Fe2O3 nanoparticles in Saccharomyces cerevisiae. Toxicology research, 6(5), pp.719-728. Doi:10.1039/c7tx00123a.
Zhu Y, Liu X, Hu Y, Wang R, Chen M, Wu J, Wang Y, Kang S, Sun Y, Zhu,M. 2019, Behavior, remediation effect and toxicity of nanomaterials in water environments. Environmental research, 174, pp.54-60. Doi: 10.1016/j.envres.2019.04.014.